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Abstract. Structural, mechanical and thermodynamical properties of close packed binary systems
of discs with hard, elastic and Lennard-Jones potentials of interaction are considered. Using the
method of molecular dynamics the transition from crystal melting to glass softening with increasing
relative dispersity in disc size from 0 to 0.23 is investigated. A single particle mean-field model is
proposed, which allows us to obtain straightforwardly the constitutive equation and shear modulus
of the systems considered.

0. Introduction

At present there are different viewpoints on the nature of crystal melting and glass softening
(‘glass transition’) processes. Besides a simple Lindeman criterion relating the melting process
to an amplitude of lattice vibrations [1], Born’s theory based on the assumption that the shear
modulus turns to zero at the melting point [2], and theoretical models based on the dislocation
mechanism of crystal melting have been proposed (for example, [3, 4]). However none of these
approaches provides a clear understanding of microscopic processes responsible for crystal
melting. The same thing relates to the glass transition, which is considered as a purely kinetic
phenomenon or a thermodynamic phase transition of second or first order [5–7].

Essential progress in understanding these processes on the molecular level can provide
the analysis of a two-dimensional system of discs which are now under intensive investigation
as a convenient model for a wide range of problems [8–11]. Specific interest in these systems
results from studying thin films on the surface. Today properties of one-component assemblies
of discs with different interaction potentials are rather well understood. Particularly, it is shown
that the melting of a crystal in the plane comprises two subsequent phase transitions of infinite
order (without any jumps in derivative values) in a narrow temperature range. An intermediate
metastable phase (hexatic) shows an orientation order and no translational one [7].

The binary assembly of discs in the plane is the simplest polydisperse system allowing
us to control the gradual transition of a crystal to the amorphous solid (glass) by changing
the relative difference in size of two disc types and their concentrations. The effect of
the system composition on its structure in solid state (at zero temperature) is discussed in
[9–11]. Thermodynamic properties of polydisperse systems are much less studied. Thus, in
the assemblies of Lennard-Jones (LJ) elastic and hard discs a liquid–solid transition takes place,
the structure of the solid state being dependent on the system composition [12]. Mechanical
parameters of a system of LJ discs of relative difference in sizes being equal approximately to
0.47 are described in [13]. However up to now the effect of the system properties (interaction
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potential, fraction size and concentration) on the parameters of solid–liquid transition has not
been elucidated.

In this paper microscopic mechanisms of crystal melting and glass softening are discussed
on the base of molecular dynamics (MD) analysis of a two-component two-dimensional system
of discs of different interaction potentials. In computer simulations the solid state usually differs
from the liquid state by the presence of self-diffusion in the latter case which disappears upon
liquid–solid transition. However the shear resistance is known to be the main characteristic
feature of the solid state. The difference between these definitions is the most evident in
the assemblies of hard discs without attraction at zero temperature in the absence of both self-
diffusion and shear resistance. Hence, in this paper special interest is paid both to self-diffusion
and shear resistance.

In the first section a model system is presented, as well as some details of numerical
simulations being described. In the second section the temperature driven solid–liquid
transition in the system is analysed.

The third section is devoted to the theoretical estimation and computer simulation of the
system mechanical properties. The main results obtained are briefly discussed in section 4.

1. Model and method of computer simulation

Systems of elastic or LJ discs of two types have been considered in a cell with periodic boundary
conditions. The overall number of particles was from 1000 to 120 000, the numbers of particles
of each type being identical.

For elastic discs the interaction potential was expressed as:

U(rij ) =
{
k(rij − Ri − Rj)2/2 rij 6 (Ri +Rj)

0 rij > (Ri +Rj)

whereRi , Rj are particle radii,rij the distance between centres ofith andj th particles andk
the stiffness of particles. Atk/P →∞ (P is external pressure) the system can be considered
as a model of absolutely hard discs (HD model).

For the Lennard-Jones model (LJ model) the interaction of particles was defined by LJ
potential of finite interaction radius:

U(rij ) =
{
ULJ (rij )− ULJ (2.5σij ) rij 6 2.5σij
0 rij > 2.5σij

ULJ (rij ) = 4ε

[(
σij

rij

)1/2

−
(
σij

rij

)6]
whereσij = 0.5(σi + σj ), σi is the size parameter ofith particle.

All calculations were accomplished in a system of units where the Boltzmann constant,
particle mass, and small disc diameter (2R1 or σ1) were equal to 1.

The initial packing represents an ideal hexagonal crystal of identical discs (at given
pressure). To obtain a binary system the radii of 50% of randomly located discs were gradually
increased up to a given value ofδ: δ = (R2−R1)/R1,R2 > R1, orδ = (σ2−σ1)/σ1, σ2 > σ1

for elastic and LJ discs, respectively. The system relaxation by density was carried out
simultaneously at constant pressure. As was shown earlier, this procedure provides formation
of nearly the densest packing [11].

The Berendsen algorithm was used to simulate the NPT ensemble,x- andy-components
of pressure being given independently, which made it possible to simulate both bulk stress,
Pτ = (Px + Py)/2 and shear stress,Pτ = (Px − Py)/2 [14, 15]. The system heating up
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(a)

(b)

Figure 1. Typical dependences of mean square displacement〈x2〉 versus timet at different
temperatures: (a)T = 0.01 (solid), (b)T = 0.08 (liquid), N = 4096,P = 0.2, k = 1000,
δ = 0.5.

to a given temperature was carried out gradually, the temperature being increased by the
step of 0.001 of temperature unit with the relaxation of density and energy at each step.
This procedure of numerical simulation made it possible to obtain continuous temperature
dependences of the system parameters, particularly, to evaluate the thermal expansion
coefficient,P1S/1T .

Each run length consisted of 100–1000 of time units that allowed measurement of the
system packing fraction and self-diffusion coefficient to a good accuracy. The packing fraction
was defined by the ratio between the area occupied by the discs and the mean (by time) area
of the calculated cell. The self-diffusion coefficient was determined as a slope of the plot of
the mean-square deviation of particles, versus time at high time values where this dependence
was a linear one (figure 1(a),(b)).

Diagrams of biaxial compression were obtained at constantP and constant rate ofP
change (dP/dt = 0.000 03–0.001) and values of volume (εγ ) and shear (ετ ) deformations
were measured:εγ = (εx + εy)/2, ετ = (εx − εy)/2, whereεx = Ax/Ax0, εy = Ay/Ay0,
Ax0 andAy0 are dimensions of the calculated cell in the undeformed state andAx andAy are
dimensions of the cell under deformation conditions. The typical diagram is given in figure 2.
As shown, at lowετ the plot ofετ versusPτ is linear and the shear modulus,µ = Pτ/ετ can
be calculated, as well as the yield stressP ∗τ (the maximum shear stress).
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Figure 2. Typical dependence of shear stressPτ and volume deformationεγ on shear deformation
ετ . Bulk stressPγ = P = const. System of units—see text,P ∗τ —yield stress,µ—shear modulus.

As known, the numerical simulation in binary systems can be accompanied by system
separation in fractions differing by particle size. The separation degree on the local scale
was controlled as follows: the numbers of different triads of neighbour discs were calculated
for a system with random distribution and the system discussed. Then the parameter that
differentiates this system from a random one was calculated [11]:

ξ =
√∑

(Ni −Nic)2√
N

whereNi andNic are measured and calculated numbers of triads of different type andN the
total number of particles in the system. For a random packingξ ∼ 1 and for a fully separated
systemξ ∼ √N . As shown, for all the systems considered the value ofξ parameter was
less than 3 and was practically constant in the course of numerical simulation, which suggests
the absence of separation in fractions. So all the systems considered are metastable in the
simulated time scale.

The degree of system ordering was determined by analysing the orientation correlation
functiong6(r):

g6(|r − r0|) = 〈ψ(r)ψ(r0)〉

ψ(rj ) = 1

z

z∑
k=1

ei6θkj

wherez is the number of nearest neighbours of thej th particle andθij the angle between the
line connecting the centres ofith andj th particles and a fixed axis, the averaging being carried
out over all the particles.

In crystalline systems at great distancesg6(r) tends to a value differing from zero (in
the ideal hexagonal crystalg6(r) = 1) whereas in liquid and glass atr → ∞ g6(r) → 0
[16].
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2. Temperature driven solid–liquid transition

2.1. Theoretical model

The phase transition of the first order (melting) in crystals is usually related to the nucleation
and mobility of structural defects (dislocations and disclinations) [17]. The nature of glass
transition is not so evident because of ambiguous identification of structural defects in glass
[18]. However in the system of hard discs considered the simulation data demonstrate a
continuous transition from the crystal melting to the glass softening. This fact suggests that
the model to explain transitions in these systems must be the same.

The key concept of such a model is that all the properties of the system considered are
governed by local geometrical disorder; from the geometrical point of view near the melting
point (Ttr ) the free interchange of the discs becomes possible. For the case of hard discs this
approach can be developed using simple calculations.

Figure 3. Melting of hexagonal crystal of hard discs—illustrative scheme:R—cell radius,r—disc
radius; (a)T = 0, (b) 0< T < Ttr , (c) T = Ttr .

Let us consider a system of six identical discs surrounding the central one (figure 3). The
interchange is possible if the system density is low enough to allow the central disc ‘to enter’
the circle of its nearest neighbours (see figure 3(c)). If all the seven discs form the ring of
minimum radius, it can be expressed as follows (see symbols in figure 3):

R = r +
r

sin(β/2)
= 3.31r β = 2π

7
≈ 51.4◦.

The relative change of the cell volume can be roughly estimated as follows:

1S

S
= πR2 − 9πr2

9πr2
≈ 0.214.

The relative density corresponding to this change of volume is expressed by:

ρ∗ = 0.907

1.214
≈ 0.75. (1)

Thus the minimum additional volume of the cell is evaluated when local changes in
topology of bonds between a particle and its neighbours are possible. This interchange
in neighbours can result in initiation of topological structure defects of minimum intensity
in glasses [17–19] and vacancies in crystals.

In binary systems the relative volume change upon melting will be different due to
difference in sizes of neighbour particles. The calculation for different neighbour types shows
that the volume change becomes lower at increasing relative difference in particle size. On the
other hand, the increase inδ-values results in reduction of density atT = 0. As a result, the
density at the melting point is changed moderately.
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2.2. Constitutive equation

Let us consider a system of hard discs. The discs oscillate near their equilibrium states within
the boxes formed by the nearest neighbours at temperatures below the melting point. Since
the self-diffusion in the solid state is low, the effect of discs interchange between the boxes is
negligible. Thus the interparticle interaction reduces to fully elastic collisions with the nearest
neighbours, which allows us to apply a one-particle model of the mean field (where each disc
is suggested to be ‘locked’ in an immobile box with rigid walls) to the system of hard discs.
The box size must be chosen so that the ratio between the disc area and the box area is equal
to the mean density of the system.

A similar approach was first used in the well known paper [20] while studying the
phase diagrams and melting of molecular systems. The difference is that we do not use
any phenomenological parameters. It allows us to obtain straightforwardly the constitutive
equation. As will be shown in section 3 this model with certain additions can be used for the
analysis of mechanical properties also.

Let us consider the motion of a disc of radiusr0 in the box of radiusR. It can be easily
seen that for elastic collisions this motion is completely described by the motion of the disc
centre within the circle of radiusr = R− r0. If φ is the angle between the velocity vector of
the disc centre and the circle radius in the point of collision, the momentum transmitted to the
circle boundary in one collision is equal to:

1p = 2mv cosϕ

wherev is disc velocity andm disc mass. Then the average time between the consecutive
collisions can be estimated as follows:

τ = r cosϕ

v
.

The average pressure of the disc on the box boundary can be expressed as follows:

P = 1p

2πRτ
= mv2

2πRr
.

The temperature in the system being defined by the following simple relationship (the
Boltzmann constant is suggested to be equal to 1):

mv2 = 2T

the constitutive equation may be written as follows:

PS/T = 1/(1−
√
S0/S).

If the condition(R − r0)/R � 1 is met, the constitutive equation can be finally written
in the following form:

P(S − S0) = 2T (2)

whereS = πR2, S0 = πr2
0. When comparing the results obtained using this equation to the

experimental data, account must be taken of the fact that the initial densityρ0 is not equal to
1 and thus the ratioS0/ρ0 must be used instead ofS0.

The relative temperature of the solid–liquid transition can be estimated using the
constitutive equation:(

T

P

)∗
= πr2

0

2

(
1

ρ∗
− 1

ρ0

)
whereρ0 = 0.9069 is the packing fraction of the ideal hexagonal crystal. Substitutingρ∗ from
equation (1) gives the temperature value:(

T

P

)∗
= 0.094. (3)
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2.3. Results of computer simulations

In figure 4 (curve 1) typical plots of packing fraction versus temperature are shown for a system
of elastic discs withk/P = 5000 (this system can be considered as an HD model). The anal-
ogous dependences take place for both elastic and LJ discs. It turned out that in the systems
of hard, elastic and LJ discs of identical size a sharp jump in density was observed at a given
temperature. The analysis of mechanical property measurements shows that the solid–liquid
transition takes place in the range of the above density jump. The melting process of solid crys-
tals from discs is accompanied by yield stress and elastic modulus reducing to zero at the melting
point (figure 5(a)). By contrast, the self-diffusion coefficient increases above the melting point.

Figure 4. Plot of densityρ versus reduced temperatureT/d2P in binary systems of hard discs
(Pτ = 0): δ = 0 (1);δ = 0.05 (2);δ = 0.1 (3);δ = 0.15 (4);δ = 0.2 (5);δ = 0.3 (6);δ = 0.5 (7).

The experiments on crystallization and melting demonstrate the difference of the
temperatures to be less than 5%. So, the difference between the melting point and the point
of loss of stability is lower than the accuracy of our calculation, which allows to detect the
melting point unambiguously.

At zero temperature a long-range orientation order is observed in the system of identical
discs, i.e. the functiong6(r) attains a limit differing from zero at large distances. When
increasing temperature the value of this limit lowers and beyond the range of density jump the
long-range order is not observed in the system (figure 6(a)).

Upon the system melting the density jump persists withδ increase, but the jump value
decreases (figure 4, curves 2–7) and disappears at the critical value ofδ∗ = 0.23. At δ > 0.23
the jumps in values of density and coefficient of thermal expansion disappear. The temperature
dependences of yield stress, elastic modulus and self-diffusion coefficient of the systems
considered (crystals from identical discs and systems withδ > δ∗) are similar (figure 5(a),(b)).

At zero temperature in the systems withδ-values differing from zero the gradual decrease
of ordering degree is observed whenδ-values growing. Atδ-values corresponding to the
absence of a density jump upon solid–liquid transition the long-range orientation ordering
does not take place (figure 6(b)).

These regularities are valid for particles with elastic and LJ interaction potentials. As
shown, the plots of density jump versus relative difference in disc radii are similar and critical
values ofδ∗ corresponding to zero density jump for these systems are in good accordance
(figure 7).
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(a)

(b)

Figure 5. Plot of self-diffusion coefficientD, yield pointP ∗τ and shear modulusµ versus reduced
temperatureT/Ttr : (a) crystal (δ = 0, hard discsP = 0.2, 2, 5,k = 100, LJ discsP = 2, 10, 50,
ε = 1); (b) binary glass (δ = 0.5, hard discsP = 0.2, 2, 5,k = 100, LJ discsP = 10, 50,ε = 1).

The density of a solid at phase transition point is weakly dependent on the difference in
particle sizes up to the confluence point (δ ≈ 0.23) whereas the density of a liquid shows
nearly linear growth withδ and reaches the density of a solid at the confluence point; beyond
this point both densities of the solid (glass) and the liquid grow. It should be noted that in the
sameδ range (from 0 to 0.23) the gradual drop of density atT = 0 (the maximum packing
fraction) is observed. The close value ofδ∗ at equal disc concentrations was given in [12].

The value of packing fraction corresponding to the phase transition atδ = 0 isρ∗ ≈ 0, 73
and the coincidence with the theoretical valueρ∗ = 0.747 (equation (1)) is satisfactory.
The results obtained correspond to a known crystallographic rule that the cocrystallization of
structurally similar compounds can take place at a difference in molecule size not exceeding
a given value [21]. Thus the results obtained should be the first demonstration of a surprising
similarity in the structural transition (melting) and aggregate transformation (glass transition).

In the assemblies of hard discs the temperature of transition (melting or glass transition),
Ttr , is proportional to pressure; for the ideal crystal from hard discsT/Pd2 ≈ 0.1–0.11.
Substitution ofP ∗ = P/(εσ 2) and T ∗ = T/ε leads to a common linear dependence of
Ttr versusP for all LJ systems, which coincides with the analogous dependence for elastic
discs.
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(a)

(b)

Figure 6. Plot of orientational correlation functiong6(r) at different temperatures (equal discs,
δ = 0) (a) and different values of relative difference in disc sizeδ (b): δ = 0 (1); δ = 0.1 (2);
δ = 0.2 (3); δ = 0.22 (4); δ = 0.25 (5); δ = 0.3 (6) δ = 0.4 (7); δ = 0.5 (8), elastic discs,
N = 4096,k = 1000,P = 0.2.

The differences between the systems with elastic and LJ interaction potentials arise from
the presence of an attraction component in the latter case. As a result, the melting point is
different from zero at zero external pressure and the temperature dependence of the system
parameters is more strongly expressed.

The peculiar behaviour of the coefficient of thermal expansion,P dS/dT , is observed near
the melting point. For the crystal of absolutely hard identical discsP dS/dT = 2 (equation (2)),
this value being constant in the whole solid region and in the liquid just above the melting
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Figure 7. Plot of density in solid and liquid state near transition area versus relative difference in
disc sizeδ: LJ, solid (1); LJ, liquid (2); HD, solid (3); HD, liquid (4).

Figure 8. Coefficient of thermal expansionP dS/dT as a function of reduced temperature in
systems of hard discs:δ = 0 (1),δ = 0.3 (2) and theoretical estimation (3).

point (figure 8). For elastic discs and/or binary assemblies withδ < 0.23 P dS/dT ≈ 2
and this value is temperature dependent, but the jump ofP dS/dT at the transition point is
absent.

In the systems with LJ potential at high pressures (P > 10ε0/d
2) the dS/dT -jump at the

transition point is also absent at anyδ-values. The dS/dT -jump at the melting point (δ < 0.23)
takes place at low pressures only (P < 2ε0/d

2) when the strong temperature dependence of
dS/dT is observed.

In these systems the temperature dependence ofP dS/dT and the dS/dT -jump in the
presence of the density jump is related to the attraction branch in the curve of potential energy
and to the dependence of attraction force on the density, i.e. mean interparticle distance. At
high mean distances the attraction value decreases with the mean interparticle distance, i.e. with
temperature rise and density drop. The continuous smooth plots ofP dS/dT versus density
observed in all cases confirm this explanation.
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3. Analysis of mechanical properties

3.1. Shear modulus estimation

The calculation of the shear modulus is based on the same assumptions as were used for
calculating the constitutive equation. The only additional detail to be taken into account is
the anisotropy related to shear stress. This anisotropy is taken into account in the mean field
model using the assumption that the ‘effective box’ has elliptic rather than circular shape and
the difference between axes of these ellipses is defined by the shear deformation level.

However this model is rather difficult to analyse, since the motion of a disc in the ellipse
with elastic walls (‘elliptic billiard with balls of finite size’) is very complicated from the
mathematical viewpoint.

To simplify the model the motion of a square ‘particle’ in a rectangle of larger size can be
considered, the difference between the rectangle sides being related to the shear deformation. It
can be easily seen that this model is identical to the ‘circle in an ellipse’ model from the physical
point of view, because the latter results in the same constitutive equation in the isotropic case.

Let us consider the square with sidel which moves with velocityv in the rectangle with
vertical side being equal toL +1 and horizontal side being equal toL−1, whereL, l � 1.
The average force acting on the unit of length in the horizontal direction is expressed by:

Px = mv2

2(L +1)(L− l −1)
and in the vertical direction:

Py = mv2

2(L−1)(L− 1 +1)
.

The shear deformation may be written as follows:

ετ = 1

L
.

The shear modulus can be calculated as follows:

µ = Px − Py
2ετ

= T Ll

2L2(L− l)2 .
Taking into account the constitutive equation governing the system, the following equation

can be obtained:

µ = P

2

(
S0
P

T
+ 1

)
. (4)

3.2. Analysis of volume shear deformation

To calculate the volume deformation under shear conditions let us first calculate the trace of
stress tensor for the deformed ‘mean-field box’. The pressure value in the deformed box is
expressed as follows:

Pdef = Px + Py
2

= T L(L− l)−12

(L2 −12)((L− l)2 −12)
.

When returning to the extensive parameters we finally obtain:

Pdef = 2T

S − S0

[
1− 2Sε2

τ /(S − S0)

1− 4SS0ε2
τ /(S − S0)2

]
whereετ = 1/L.
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In the case of constant pressure in the system the volume change (relative volume
deformation) according to the constitutive equation can be estimated as follows:

εγ = 1S

S
≈ S − S0

S

1P

P

where1P = Pdef − P .
Substituting the expression for the change of average pressure we finally obtain:

εγ = 2T

PS

[
1− 2Sε2

τ /(S − S0)

1− 4SS0ε2
τ /(S − S0)2

− 1

]
. (5)

3.3. Numerical simulation results

All the biaxial compression diagrams at low temperatures are typical for solids (initial elastic
part, maximum stress followed by its reduction). As known, the shear deformation in a solid
(both elastic deformation and plastic one) is accompanied by dilation proportional to the yield
stress. At high temperatures the shear deformation (flow of liquid above the transition point)
takes place at constant volume. The shear modulus and yield stress for the systems of hard
discs are proportional to the external pressure both for crystals and glasses. The absolute
values of shear modulus and yield stress for a crystal from identical discs (δ = 0) are higher
by a factor of four as compared to the values for glass (δ = 0.5). The change in mechanical
properties with difference in particle size takes place in the same range where the change in
packing fraction values is observed (0< δ < 0.23). The constant ratio of yield stress and
shear modulus values,P ∗τ /µ = 0.032± 0.008 is valid for all systems studied.

Thus the mechanism of shear resistance for the above solids is determined by the volume
increase at shear, i.e. work against the external pressure and work against the attraction forces
for the systems with LJ potential. The theoretical relationship between the volume and shear
deformation (equation (5)) is in good accordance with the data of numerical simulations
(figure 9). The comparison of the simulation data on shear modulus for a crystal of identical
discs to the calculation results obtained with (equation (4)) is presented in figure 10 suggesting
that the theoretical predictions are rather reliable. The behaviour of the shear modulus in
glasses (δ > 0.23) is more complicated and will be analysed elsewhere.

Figure 9. Plot of volume deformation versus shear deformation in systems of hard discs,
T/P = 0.02 (1), T/P = 0.05 (2), T/P = 0.1 (3); theoretical estimations (a) and data of
computer simulation as parametric dependencesετ (Pτ ) andεγ (Pτ ) (b) are represented.
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Figure 10. Plot of shear modulusµ/Ttr versus relative temperatureT/Ttr in systems of equal
discs: HD,P = 0.2 (1); HD,P = 2 (2); HD,P = 5 (3); LJ,P = 2 (4); LJ,P = 10 (5); LJ,
P = 50 (6); theoretical estimation (7).

4. Conclusions

The results of molecular dynamics simulation suggest that a two-dimensional system of plane
discs is the simplest system for studying basic thermodynamic and mechanical regularities
which are characteristic for solids. At the same time, the theoretical system description based
on very simple estimations turns to be possible. From a certain viewpoint the system of
plane discs can be considered as an alternative to the quasiharmonic crystal in the region of
strong anharmonism. For the system considered the simple one-particle statistical models
make it possible to forecast both mechanical (shear modulus) and thermodynamic properties
(temperatures of crystal–liquid and glass–liquid transitions) with tolerable accuracy.
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